Ultrafast sol–gel synthesis of graphene aerogel materials
نویسندگان
چکیده
منابع مشابه
Highly compressible 3D periodic graphene aerogel microlattices
Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered a...
متن کاملUltrafast photoluminescence from graphene.
Since graphene has no band gap, photoluminescence is not expected from relaxed charge carriers. We have, however, observed significant light emission from graphene under excitation by ultrashort (30-fs) laser pulses. Light emission was found to occur across the visible spectral range (1.7-3.5 eV), with emitted photon energies exceeding that of the excitation laser (1.5 eV). The emission exhibit...
متن کاملSynthesis of Fe-doped CeO2 Nanoparticles Prepared by Solgel Method
Nanomaterials have achieved remarkable technological advances in bulk materials due to their excellent physical, chemical and biological properties. cerium oxide (CeO2) nanostructured doped with Fe ions is attractive due to improvement in redox properties, transport property and surface-to-volume ratio. In this research, Fe-doped CeO2 nanoparticles (NPs) were prepared by s...
متن کاملUltrafast all-optical graphene modulator.
Graphene is an optical material of unusual characteristics because of its linearly dispersive conduction and valence bands and the strong interband transitions. It allows broadband light-matter interactions with ultrafast responses and can be readily pasted to surfaces of functional structures for photonic and optoelectronic applications. Recently, graphene-based optical modulators have been de...
متن کاملGraphene mode-locked ultrafast laser.
Graphene is at the center of a significant research effort. Near-ballistic transport at room temperature and high mobility make it a potential material for nanoelectronics. Its electronic and mechanical properties are also ideal for micro- and nanomechanical systems, thin-film transistors, and transparent and conductive composites and electrodes. Here we exploit the optoelectronic properties of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carbon
سال: 2015
ISSN: 0008-6223
DOI: 10.1016/j.carbon.2015.08.037